function of intervals - traduction vers russe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

function of intervals - traduction vers russe

Nested intervals theorem; Nested interval property; Nested sequence of closed intervals; Nested sequences of intervals; Nested sequence of intervals; Nested Intervals Theorem
  • {{pi}} can be estimated by computing the perimeters of circumscribed and inscribed polygons.
  • 4 members of a sequence of nested intervals

function of intervals      

математика

функция интервалов

function of several variables         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation
функция нескольких переменных
empty function         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation

математика

пустая функция

Définition

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Wikipédia

Nested intervals

In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals I n {\displaystyle I_{n}} on the real number line with natural numbers n = 1 , 2 , 3 , {\displaystyle n=1,2,3,\dots } as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:

  1. Every interval in the sequence is contained in the previous one ( I n + 1 {\displaystyle I_{n+1}} is always a subset of I n {\displaystyle I_{n}} ).
  2. The length of the intervals get arbitrarily small (meaning the length falls below every possible threshold ε {\displaystyle \varepsilon } after a certain index N {\displaystyle N} ).

In other words, the left bound of the interval I n {\displaystyle I_{n}} can only increase ( a n + 1 a n {\displaystyle a_{n+1}\geq a_{n}} ), and the right bound can only decrease ( b n + 1 b n {\displaystyle b_{n+1}\leq b_{n}} ).

Historically - long before anyone defined nested intervals in a textbook - people implicitly constructed such nestings for concrete calculation purposes. For example, the ancient Babylonians discovered a method for computing square roots of numbers. In contrast, the famed Archimedes constructed sequences of polygons, that inscribed and surcumscribed a unit circle, in order to get a lower and upper bound for the circles circumference - which is the circle number Pi ( π {\displaystyle \pi } ).

The central question to be posed is the nature of the intersection over all the natural numbers, or, put differently, the set of numbers, that are found in every Interval I n {\displaystyle I_{n}} (thus, for all n N {\displaystyle n\in \mathbb {N} } ). In modern mathematics, nested intervals are used as a construction method for the real numbers (in order to complete the field of rational numbers).

Traduction de &#39function of intervals&#39 en Russe